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Abstract

In cloud-scale datacenters, it is common to shard
(partition) data across large numbers of nodes.
Atomic transactions are typically implemented
by running transactions speculatively, and then
certifying them, aborting ones that cause con-
flicts. However, in high contention scenarios, this
approach has drawbacks: rather than achieving
any substantial level of concurrency, it prevents
concurrency by aborting all but one of the con-
tending transactions.

Our work explores a new option. We em-
ploy prediction, ordering transactions in ad-
vance based on the objects they are likely to ac-
cess, providing ACID transactions in a Resilient
Archive with Independent Nodes (ACID-RAIN).
This preliminary ordering decreases abort rate,
and eliminates aborts in error-free executions.
To allow fast recovery from failures our scheme
does not introduce any locks. The system con-
sistency and durability rely on a single scalable
tier of highly-available independent logs. Sim-
ulations using the Transactional-YCSB work-
loads show the scalability and benefits of ACID-
RAIN.

1 Introduction

Large-scale data-center computing systems often
maintain massive data sets, sharded over large
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numbers of storage nodes. When client transac-
tions access data on multiple shards, the issue of
consistency arises. Ideally, we would use a sys-
tem with ACID transactions [2, 11, 1], because
this model facilitates reasoning about system
properties and makes possible a variety of high-
assurance guarantees. Nonetheless, the ACID
model is often avoided in today’s large-scale sys-
tems due to efficiency concerns [10]. Existing ap-
proaches typically run transactions speculatively
and perform certification after they complete to
preserve consistency, either committing or abort-
ing each transaction depending on conflicts.

In this paper, we present ACID-RAIN — an
architecture for ACID transactions in a Resilient
Archive with Independent Nodes. The system
orders transactions before they begin by employ-
ing predictors that estimate the set of objects
each transaction will access. Such predictors can
be implemented with machine learning tools [18].
To leverage prediction, a transaction reserves a
version of each object it will use. When later
accessing the objects, it will see these reserved
versions. Reservations are, in a sense, leases for
future object versions. However, leases are is-
sued for a predefined time period, whereas any
node (not the lease holder) may unilaterally de-
cide to ignore a reservation.

To run effectively at large scale, ACID-RAIN
must tolerate performance hiccups, message loss,
and crashes, all of which are common in such set-
tings. Ideally, progress should never depend on
the responsiveness of any single machine. Ac-
cordingly, ACID-RAIN requires reliable entities
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only at a single tier of the system — a set of in-
dependent highly available logs, used in a novel
manner. All other entities may fail and can
be replaced instantly on failure; the architec-
ture maintains consistency even in the event of
false suspicion. Additionally, reservations serve
as suggestions – a reservation that is not used
because of a sluggish or dead owner is ignored.

The independence of system elements allows
for good scalability. Nevertheless, due to the in-
terdependence of the log contents, garbage col-
lection (GC) has to be carefully coordinated to
maintain consistency.

We evaluate our architecture by simulation
with the transactional-YCSB benchmark [8, 9]
as our workload. We contrast the effectiveness
of employing prediction and the scalability of
ACID-RAIN with other approaches.

2 Model and Goal

We assume unreliable servers that may crash or
hang, in an asynchronous, loss-prone network.
To accommodate reliable storage, we employ
highly-available, sequentially consistent logs, as
explained in Section 3.1.

The system exposes a transactional data store
supporting serializable transactions. A client
invokes a begin-transaction command, followed
by read (e.g., a field from a table) and update
(e.g., setting the value of a field in a table)
operations. Finally the client invokes the end-
transaction command, and the system responds
with either a commit or an abort. Committed
transactions form a serializable execution. TMs
are equipped with predictors that foresee which
objects a transaction is likely to access on its
initiation.

3 ACID-RAIN

We now describe the operation of ACID-RAIN.
We start with an overview of the system’s struc-
ture in Section 3.1, and proceed to describe the
algorithm in Section 3.2.
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Figure 1: Schematic structure of ACID-RAIN. TMs ac-
cess multiple objects per transaction. Objects are man-
aged by OMs. OMi(1) is falsely suspected to have failed,
and replaced by OMi(2), causing them to concurrently
serve the same objects. OMs are backed by highly-
available logs, where they store tentative transaction en-
tries for serialization, and (later) certification results.

3.1 System Structure

The structure of the system is illustrated in Fig-
ure 1. At the base of ACID-RAIN are a set of
independent highly-available logs that together
describe the state of the entire system. Each log
is accessed through an Object Manager1 (OM )
that caches the data and provides the data struc-
ture abstraction — exporting read and write op-
erations, while supporting transactions, which
are managed by Transaction Managers (TMs).

TMs provide the atomic transaction abstrac-
tion. They receive instructions from clients to
start and end a transaction, and operations to
perform on individual objects within the trans-
action. On transaction start, the TMs predict
which objects it is likely to access, and reserve
these object versions. Then, they speculatively
perform each operation with the help of the ap-
propriate OMs and according to the order set by
the reservations. Finally, they certify the trans-
action by checking for conflicts in each log (via
its OM).

Membership monitors are in charge of deciding
and publishing which machines perform which
roles, namely which machines run the log and

1In an implementation of the system one may use mul-
tiple OMs per log, dividing the log’s object set, or the
other way around, have multiple logs report to a single
OM. The choice depends on the throughput of the specific
implementations chosen for each service. In this paper we
use a 1:1 mapping for simplicity of presentation.
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OM for each shard, and which TMs are avail-
able. Any client can access any TM for any
given transaction. Other than the logs, server
role assignment may be inconsistent. Each ob-
ject (transaction) is supposed to be managed by
a single OM (TM, resp.) at a given time, but
this may change due to an unjustified crash sus-
picion whereupon an object (transaction, resp.)
may temporarily be managed by two OMs (TMs,
resp.) that do not know of one another.

Log Specification ACID-RAIN uses log
servers for reliable storage. Each log server pro-
vides a sequentially consistent log object, i.e.,
update operations are linearizable, but reads
may return outdated results2. Multiple machines
may append entries to a log. Machines may reg-
ister to the log; the log then sends to each all
entries, from the first one in the log, to its end,
and then new entries as they arrive. An OM may
instruct the log to truncate its prefix.

3.2 Algorithm

We now describe the ACID-RAIN algorithm. We
explain the reservation and certification protocol
(illustrated in Figure 2), then discuss prediction
errors, garbage collection, and failure handling.

A transaction begins with the TM receiving
a begin-transaction instruction from the client.
The TM assigns it a unique txnID, and pre-
dicts which objects the transaction will access.
It interrogates the OMs about all these objects,
and they respond with the latest unreserved
timestamp of each object. The TM chooses a
timestamp larger than maximum among the re-
sponses, and asks the OMs to reserve the objects
with this timestamp to txnID. The OMs confirm
the reservation if no concurrent TM has reserved
a larger timestamp in the meantime. The TM
then proceeds to serve transaction operations by
routing them to the appropriate OMs. Each op-
eration is sent to the OM in charge of the object,

2Such logs may be implemented with various tech-
niques, from SMR to log chains [15, 16]; we abstract this
away, and assume highly available logs.

Figure 2: An example flow of the algorithm.

along with the txnID. The OMs order accesses
based on timestamp reservations, and respond
only when the correct version is available.

Each committed transaction is assigned a
timestamp. When reading an object, the time-
stamp of the latest transaction that wrote this
object is returned to the TM. The transaction’s
timestamp is chosen to be larger than the largest
timestamp returned by its operations, and not
larger than its reserved timestamp (if possible).

Once a TM receives an end-transaction in-
struction from a client, it notifies the trans-
action’s OMs, detailing the transaction’s time-
stamp and log-set (the logs in charge of the
shards it touched). When it receives such a noti-
fication, an OM appends to its log an entry con-
sisting of the txnID, its timestamp, its read- and
write-sets (read-set with the read timestamps,
write-set with written values), and its log-set. It
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then waits for the entry to appear in the log.

A transaction is committed if and only if it is
written to all logs, and it does not conflict with
previous transactions on any of them. Conflicts
are violations of read-write, write-read or write-
write order. Each OM checks for local conflicts
by checking timestamps in the prefix of the log
up to the transaction entry, and sends its local
result (success/failure) to the calling TM. If all
return success, then the transaction has commit-
ted, otherwise it has aborted. The TM notifies
the client of the transaction result and instructs
the OMs to place this result in the logs. The
OMs notify the TM once the results are logged.

Prediction Errors If there are no prediction
errors, failures, or false suspicions, there are no
aborts.

If the transaction accesses an object that was
not predicted, this object has no reserved version
for it. Accessing it can therefore result in a con-
flict of the transaction or of the following ones.
Of course, with luck, no conflict would occur,
but if one does it will be detected at certifica-
tion time, and result in an abort of a transac-
tion. Performance may be slightly reduced, but
consistency is maintained.

If a transaction does not access an object that
was predicted, the TM must still release the
reservation when the transaction ends. This
reservation might slow the processing of other
transactions that wait for its release, but would
not break consistency.

If a TM is suspected as failed, its reservations
are revoked. This may harm performance, but
cannot break consistency.

GC Logs are truncated to conserve resources
and to reduce log replay time on OM recovery.
Each OM occasionally summarizes the log pre-
fix, and places this summary in the log. However,
the presence of a summary of the log up to a cer-
tain entry is not sufficient to allow truncation at
that entry. This reason is that truncation must
not break transaction certification. Each trans-

action should be either committed or aborted in
all its logs, and therefore cannot be removed from
any of them before the result is published. To
verify this, the committing TM appends a GC
entry to all the transaction’s logs after receiv-
ing an acknowledgement that they all registered
the transaction’s result. An OM can invoke log
prefix truncation if the prefix was summarized,
and all its transactions have corresponding GC
entries.

Robustness In case of a TM or OM crash, or a
missing result or GC entry (due to message loss),
another TM may read the transaction entry in
one of the logs, find its log-set, and continue the
certification and GC process.

If a TM places a transaction entry in a strict
subset of the transaction’s log set, when an-
other TM is instructed to fix this, it cannot tell
whether the original TM is crashed or slow. To
overcome this, we introduce poison entries. The
fixing TM places a poison entry in the logs that
miss the original entry. A poison is interpreted
as a transaction entry with a conflict. The orig-
inal entry may either arrive eventually or not.
The first entry/poison counts, and the following
are ignored. Any TM can therefore observe the
log and consistently determine the state of the
transaction, without a race hazard.

4 Evaluation

We evaluate ACID-RAIN by comparing its per-
formance to the classical approach that does not
use prediction and compare its certification pro-
tocol with other certification schemes. We use a
custom-built event-driven simulation, simulating
each of the agents in the system — clients, TMs,
OMs and logs. Our workloads are an adaptation
of the transactional YCSB specification [8, 9],
based on the original (non-transactional) YCSB
workloads [6]. Each transaction has a set of
read/update operations spread along its execu-
tion. Object accesses follow one of two different
random distributions — (1) uniform, where each
object is chosen uniformly at random, and (2)
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(a) Uniform random

(b) Hot zone

(c) Slack

Figure 3: Ordering transactions in advance reduces con-
flicts and increases commit ratio. High conflict rates oc-
cur without with uniform access to a small number of
objects (a), and high probability of accessing a hot-
zone (b). Even inaccurate prediction is significant in high
contention, compared to the the classical approach (accu-
racy=0). Commit ratio is affected if the predictor reserves
unnecessary objects by a factor of slack (c).

hot-zone, where some of the objects belong to a
so called hot-zone, and each access is either to
the hot-zone, or outside of it (chosen uniformly
within each zone). For every run, we set an aver-
age transaction per unit-time rate (TPUT), and
transactions arrivals are governed by a Poisson
process with the required TPUT.

Prediction Our first test scenario imposes a
load substantially below the system’s capacity
with 16 shards. Each transaction reads and
writes 10 objects. The simulation is faithful
to the algorithm, with the exception of a small
shortcut – OMs grant reservations by arrival
time rather than by timestamp. This results in
deadlocks in high contention scenarios, and these
are resolved with timeouts.

First we vary prediction accuracy, i.e., the av-
erage ratio of objects the predictor guesses out of
the set the transaction eventually accesses. An
accuracy of 0 is equivalent to no prediction and
no reservation (the classical approach), and an
accuracy of 1.0 means predicting all accesses.

We consider (1) uniform random load (Fig-
ure 3a), increasing contention by decreasing the
number of objects, and (2) load with a hot-zone
of 1000 out of 107 (Figure 3b), increasing con-
tention by increasing the hot-zone access proba-
bility. Without prediction, commit rate drops as
contention rises. Accurate prediction reduces or
even eliminates this drop.3 In highest contention
scenarios, even with moderate prediction accu-
racy, we obtain significant improvement over the
classical approach (prediction=0).

We define slack to be the average ratio be-
tween the number of accesses predicted and the
number of objects accessed by the transaction.
If a transaction accesses 10 object, then with
a slack of 1.5, it would reserve another 5 ran-
dom objects. In Figure 3c we compare (now
with uniform random load and a variable num-
ber of objects) the effect of using a perfect pre-
dictor (slack=1) with predictors that overpredict
by factors of 2 and 4. The impact of overpredic-
tion is surprisingly minor, a finding that should

3Note that when all accesses are to the hot zone (Fig-
ure 3b at 1.0), commit rates are lower with imperfect
prediction than in the uniform random case with 1000
objects (Figure 3a at 103). This is because all accesses
to the hot-zone go through a single OM that becomes a
bottleneck. On the bright side, since object access con-
flicts occur only at a single shard, the reservations prevent
deadlocks and result in perfect commit ratio with perfect
prediction.
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Figure 4: For an increasing number of shards, we run
multiple simulations to find the maximal TPUT the sys-
tem can handle. A global log forms a bottleneck, and
2PC with SMR TMs is blocked by contention much ear-
lier than ACID-RAIN due to its longer certification time.

make it easier to create a practical predictor.

Certification scalability To evaluate the
scalability of ACID-RAIN’s certification mecha-
nism, we avoid prediction and measure the max-
imal commit rate it can accommodate with an
increasing number of shards. Each transaction
performs 3 reads and 3 writes of objects cho-
sen uniformly at random from a small set of
500 objects. We compare (Figure 4) ACID-
RAIN against two approaches (more details in
Section 5): SMR TMs is two-phase commit with
reliable coordinators (TMs). Global log is an ar-
chitecture where TMs submit all transactions to
a single global log and check conflicts on that
single log.

ACID-RAIN scales better (i.e., has lower la-
tency for a given throughput) than 2PC since
its faster certification reduces contention. It has
no bottleneck as with a global log (that has less
overhead in small scale). While the parameters
we choose are arbitrary, the trends are robust;
choosing other parameters would provide simi-
lar trends.

5 Related Work

Our transaction ordering protocol is inspired by
a state-machine ordering mechanism suggested
by Lamport [14], but we have generalized the
protocol to work with arbitrary overlapping par-

ticipant sets. We are unaware of work that uses
prediction to order distributed transactions be-
fore certification.

Gargamel [5] uses static analysis to allow sepa-
rate workers to process independent transactions
without synchronization. Unlike ACID-RAIN’s
suggestive prediction, Gargamel determines the
final transaction order, and does not tolerate
false positive prediction errors. Additionally, it
targets a different setting than ACID-RAIN: It
is a fully replicated data store (no sharding) with
a centralized scheduler.

We briefly review here work related to ACID-
RAIN’s certification protocol. One approach for
certification is to use a single highly-available
service that orders all transactions in the system,
e.g. [4, 3]. A transaction commits if and only if it
has no conflicts with previous committed trans-
actions. When update (not read-only) transac-
tion rate is high, such a global service becomes
a bottleneck. In contrast, our system has no
such bottleneck. Thomson and Abadi [20] serial-
ized all transactions when they enter the system
to achieve a deterministic order, despite non-
deterministic operations the transactions take.
However, they consider only stored procedures,
which enable this approach, whereas we address
long running transactions and use prediction to
infer an order. In Calvin [21] transactions are
also serialized by a central service, and then
scheduled according to this global order, whereas
ACID-RAIN avoids a central service. Eve [12]
targets a different problem (SMR), where it em-
braces non-determinism and separates execution
from verification. The result is somewhat analo-
gous to our separation of optimistic ordering and
conservative certification.

Many systems [2, 17, 11, 7] use two-phase com-
mit for transaction certification. The downside
of these approaches compared to ACID-RAIN is
that they require a coordinator that performs
transactions to be highly available. This requires
another consensus (in addition to the one at the
shard itself) for each transaction, increasing cer-
tification time, and therefore contention.
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The approaches of MDCC [13] and S-DUR [19]
are close to ACID-RAIN’s certification mecha-
nism. However, ACID-RAIN separates the OM
abstraction from the highly-available log layer,
facilitating its soft-leasing mechanism and fast
recovery. We also address garbage collection,
which cannot be done independently at the logs.

Sinfonia [1] uses an architecture similar to
our certification mechanism, but addresses mini-
transactions that are submitted as a whole, with
no attempt to order potentially conflicting trans-
actions. We address full transactions, where the
clients sequentially access objects before ending
a transaction, and use prediction to order them
in advance. We believe our techniques could be
used to reduce abort rates of systems using Sin-
fonia or a similar certification mechanism.

6 Conclusion

Prediction of transaction behavior has the poten-
tial to significantly decrease abort rates in large
scale transactional systems with high contention.
In ACID-RAIN we employ prediction to obtain
soft reservations and implement atomic trans-
actions while requiring high availability only
in a single tier of independent logs. This al-
lows for low-latency high-throughput certifica-
tion. ACID-RAIN’s operations never depend on
a single machine by allowing fast recovery from
failures and performance hiccups.

In future work, we plan to build on our simu-
lation results by implementing ACID-RAIN and
exploring the different aspects of its performance
in realistic settings. Of particular interest are (1)
different network topologies with a single data-
center and with multiple datacenters, (2) behav-
ior in face of high contention (where ACID-RAIN
should prove efficient) and low contention (where
its overhead may be wasteful), (3) behavior in
error prone scenarios, and (4) performance with
predictors of different qualities.
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