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Abstract

In today’s consolidated IT platforms, the capabil-

ity to accurately account and proactively control the

overall hardware resource usage among hosted ap-

plications can be necessary for a variety of resource

management actions, such as capacity planning, dy-

namic resource reallocation and/or load balancing,

and possibly also for auditing and explicit or im-

plicit billing. We find that the increasing use of

shared services in IT platforms, as exemplified by

software-as-a-service offered by many clouds, ren-

ders existing solutions for accounting inadequate.

We argue that current state-of-the-art is insufficient

to meet the demand of today’s large scale system

management. In this paper we discuss the funda-

mental problems and propose new directions for

better resource accounting and control.

1 Introduction

Achieving operational excellence on modern in-

formation technology (IT) platforms continues to

become ever more challenging. The complex-

ity of IT platforms keeps growing with emergent

paradigms such as software defined network (SDN).

Furthermore, recent trend in Big Data is necessitat-

ing increase of platform scales to unprecedented de-

grees. Today’s management capabilities struggle to

keep up with the increase of such complexity and

scale [6, 7]. A large portion of complexity stems

from the sharing and consolidation of computing

resources. Increasingly, IT platforms consolidate

multiple S/W applications on a shared set of hard-

ware equipment for reasons of cost-efficacy or orga-

nizational necessity. Such consolidation and sharing

occur in a wide variety of platforms. Considering a

broader context, sharing also occurs for software,

non-IT infrastructure resources such as cooling and

power, and even personnel.

A clear understanding of how sharing happens

for various resources and the ability to control the

sharing can provide significant advantages in nu-

merous management scenarios. For one thing, it

can be crucial for performance management. Sub-

optimal or untimely reaction to the current resource

sharing state may adversely impact business opera-

tions. For instance, a load imbalance towards one

of the replicas in a shared database VM may impact

negatively the end-to-end delay of all the services

that rely on it. Many industry data support that rev-

enue is highly sensitive to even sub-second increase

of delays [11]. Such understanding also helps ad-

mins get answers to questions that are difficult to

address otherwise. E.g. Which app’s request is trig-

gering sudden burst of CPU saturations in one of the

key-value storage servers deep down in the service

pipeline? To which replica should I redirect such

workloads so that overall resource utilization stays

within a safe range? Is it possible to apply resource

capping so that fairness is maintained for the end

users? Would we be needing accounting techniques

for power and, even, administrative costs? Imagine

that an admin detects a fast heat build-up at some

part of the data center. Who is responsible for the

heat, and who should be charged for the correspond-

ing cooling cost?

However, ascertainment of accurate resource us-

age information (the activity we refer to as resource

accounting in this work) is a challenging objective.

First, in many cases there are no clear indicators

that tell what portion of the overall usage of the

platform’s resources stem from (and should be at-

tributed to) which component or entity that may run

elsewhere. For instance, at the database node of

a multi-tier e-commerce application, it is not clear

who the originators for given database queries are

unless the software stacks at each tier is modified to

carry request identifiers. Further, if we are to control



resource usage, this information has to be available

real time. Another difficulty is that, even with such

knowledge, resource attribution is non-trivial due

to multiplexing, request aggregation and/or buffer-

ing. One example is the write activity of disk I/O in

which OS kernel combines multiple writes and is-

sue them much later in time non-deterministically.

These challenges are intensified especially in to-

day’s complex service architectures in which many

services build on top of other heterogeneous ser-

vices via interface such as REST.

Based on our investigation, we believe that cur-

rent state-of-the-art is insufficient to deliver afore-

mentioned resource accounting and controlling ca-

pabilities to achieve operational excellence. Some

of the existing techniques rely on modifying (all

or part of) the OS or middleware stacks to enrich

the collected data [1, 10]. Often, they focus on

one specific component and implement the account-

ing and controlling functions by modifying source

code [5, 9]. However, we cannot hope to have the

source code ready or expect all of them to be in-

strumented. And, even with some instrumentations,

gathered data may not contain enough information

for our purpose. In response to such limitations, we

set this vision of building resource accounting and

control framework that is (i) generally applicable to

existing environments, (ii) accurate enough for any

type of resources, including both IT and non-IT re-

sources, and (iii) flexible enough to accommodate a

wide-range of resource management policies. This

work represents our initial effort towards realizing

this vision. We focus on IT resource such as CPU,

I/O and network in a virtualized environment.

2 Problem and Challenges

2.1 Problem Model and Definition

We use Figure 1 that shows a representative plat-

form that we use to drive our discussion. It illus-

trates various key entities and the relationships be-

tween them. We refer to a platform user or their ap-

plication whose resource usage must be separately

tracked and accounted as a chargeable entity (CE).

The concept of CE is not limited to subscribers of

software services. We define it in a broader sense to

recognize groups of computing equipment as CEs

as well. Figure 1 shows several types of such CEs

- Group 1, 2, User 1, 2, and 3. However, if needed,
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Figure 1: Model of resource accounting problem con-

text. We assume the virtualized environment.

any other entities such as “Business Logic VM” can

be treated as separate CEs.

Also shown in the figure are example shared ser-

vices that the platform offers to its CEs - a database

service and a configuration management service.

These shared services themselves have multiple

components that span several VMs or servers. In-

ternally the database service maintains functionally

separate group of VMs for load balancing. The

arrow from the configuration management service

to the database service represents the fact that ser-

vices may build on top of other services. Note that

each CE does not exclusively own its database pro-

cess. One database instance (in our example, two

front-ends and three query processing VMs for one

instance) may be shared by an unrelated group of

tenants. One good example of such a multi-tenant

database service is the Microsoft SQL Azure [8].

In SQL Azure, tenants only see their own database

spaces, but it may physically share the underlying

database process with other tenants. Our problem

setup opens up many interesting questions. What

is the CPU usage break-down of VMi by CEs?

If VMi’s CPU approaches saturation, which CE’s

workload should we redirect to another front-end so

that they will be handled by VMj? For each CE,

is I/O traffic to Storage 1 and 2 evenly distributed

from VMk? Whose workload is the cause of the

bursty CPU and network bandwidth usage at VMi?

Problem Definition: Given a set of CEs and an

accounting granularity ∆, the goal of the resource

accounting is to infer, for each CE c at server s, the

time-series U i
c(t, s) for each resource type i, where



0 ≤ U i
c(t, s) ≤ 1 to represent proportions.

As a corollary, if we let V i be the proportion of

unused resource at time t at server s, it would fol-

low that
∑

c U
i
c(t, s) + V i(t, s) = 1. Similarly,

∑
t0≤t≤tn

∑
s U

i
c(t, s) would represent the usage of

resource type i by CE c in the entire platform during

the time period of t0 ≤ t ≤ tn.

2.2 Challenges

Lack of direct indicators: A key difficulty in re-

source accounting arises due to lack of direct in-

dicators of CEs responsible for the currently in-

progress resource activities at the servers, especially

in shared services. Unlike application-owned soft-

ware, a shared service may only be exercised by a

CE indirectly, making it more difficult to ascertain

this relationship. In Figure 1, the query process-

ing VMs of the DB service is merely invoked indi-

rectly by the CEs through the front-ends, oblivious

of who it is working for. Solving this problem, in

general, requires some form of statistical inference

based on probabilistic models to capture this cau-

sation, and closely related examples can be seen in

some work [1, 2, 4].

Mismatch of resource principals and CEs: The

shared service’s software design and configuration

may not be amenable to easy adaption of existing

solutions for local accounting. For example, the

data store component in Figure 1 multiplexes the

resources assigned to its internal schedulable en-

tities (e.g., threads) in highly application-specific

(and possibly unknown) ways among the activities

it carries out on behalf of CEs rendering a solution

such as resource containers difficult to adapt.

3 Overview of Design Issues

Any accounting solution must have two elements:

(i) local monitoring and (ii) collective inference. We

use the phrase “local monitoring” to refer to facili-

ties within each server that record events and statis-

tics pertaining to the resource usage of (or on be-

half of) each CE. The phrase “collective inference”

refers to the functionality needed to combine the

pieces of information offered by local monitoring

to create a correct overall picture of accounting.

There exist a large number of techniques and

tools for local monitoring that one could choose

from. These existing techniques span a wide spec-

trum of the “level of detail” they offer at the cost of
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Figure 2: Synthetic shared service setting.
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Figure 3: Impact of burstiness and CPU util to LR result.

generality, application intrusiveness, and overheads

posed. At one end of this spectrum are techniques

that can instrument user-space and OS/VMM code

to create a very detailed record of a shared service’s

resource usage that contains sufficient information

for collective inference [3]. At the other end of the

spectrum are CE-oblivious resource usage reporting

tools that rely on information available within the

server’s OS and VMM. E.g., top, and iostat.

Then, is it good enough a solution if we com-

bine easy-to-use local monitoring tools with suit-

able inference technique such as linear regression

(LR)? In order to answer this, we have conducted

experiments using synthetic shared service of Fig-

ure 2. For the local monitoring, we employed top,

iostat and iptables for CPU, disk and net-

work monitoring, respectively. For the inference,

we chose the popular LR technique, relating in-

bound network traffic volume xi(t) from each CEi

to the CPU utilization y(t) of Svr1. That is, we have

formed following equation for each interval t.

a0 + a1 · xi(t) + a2 · x2(t) + ...+ an · xn(t) = y(t)

Then, we solved it using the least squares method to

obtain the coefficients (a0, a1...an) for each inter-

val t. Since each coefficient represents the contribu-

tion of each xi(t) to the resource usage, we treated

them as proportions to divide the CPU utilization

y(t), giving us the break-down of CPU by each CE



at Svr1 at time t. Since we wrote server codes, we

were able to measure the exact amount of CPU re-

sources consumed by each CE, which enabled us to

calculate the accuracy of LR-based technique.

We show one selected result in Figure 3 from the

set of experiments conducted. It shows the effect of

workload burstiness on the accuracy over full range

of CPU utilizations. We find that the efficacy of

LR depends upon the extent of variations within the

imposed workload. Intuitively, better accuracy is

achieved with bursty workloads because the higher

variety/dynamism in the input data supplies more

information to LR; we expect this basic insight to

apply to any statistical inference technique for ac-

counting. To summarize, we find that the efficacy of

LR relies upon both the quality of data it gathers as

well as the presence/extent of correlation between

its inputs and outputs.

Generally speaking, collective inference is a sta-

tistical learning problem that must derive models

that can meaningfully tie together the data provided

by local monitors, possibly filling in any gaps or dis-

crepancies within these data. The efficacy of such

inference crucially depends upon the resource usage

phenomena collected by local monitoring elements.

Existing monitoring tools that are not application-

intrusive have been designed for information col-

lection at the granularity of OS/VMM-relevant ab-

stractions (e.g., threads, TCP connections) that may

not coincide with the needs of our accounting. Con-

sequently we identify the following design princi-

ple that underlies our accounting solution: our local

monitoring must explicitly capture information per-

taining to resource usage on behalf of CEs to allow

accurate accounting by our collective inference.

4 Design of Our Prototype

The design principle learned in Section 3 guides

us to try different approach. Instead of seeking to

leverage existing tools with LR, we decide to put

more effort into collecting higher quality monitor-

ing data in an attempt to reduce the complications

from the inference algorithms and to gain better ac-

curacy. We have implemented our prototype tech-

niques within the hypervisor of Xen to accomplish

transparency to the VMs as well as applications.

4.1 Local Monitoring

The key aspect of local monitoring that we need

to perform is identifying and recording information

about resource principals and scheduling events of

interest. Recall from Section 2, that the real chal-

lenge in answering this question arises when CE c

uses resources on server s indirectly, i.e., when a

shared service component running on s consumes

resources on behalf of c.

Identifying the Causation and Interval: To rec-

ognize a CE c that is more than one hop away, we

adopt the principles introduced in vPath [12]. Fol-

lowing its key idea, we are able to identify who the

originating CE is upon the message arrival to the

target server s. Then, the thread that received the

message is associated with the CE c and we start

to track the CPU consumption and I/O activities. If

the thread spawns new threads or fork another pro-

cess, we also associate them to the c. When the

thread that received initial message replies back to

the sender, we consider it as the signal of the end of

resource consumption on behalf of c.

Thread Scheduling Events: Within the interval

identified by the arrival and reply of the message,

the execution of the thread that is associated with

c may be arbitrarily interleaved with the thread as-

sociated with another CE d. Therefore, in order to

correctly perform the resource accounting, we also

gather the thread scheduling events.

4.2 Collective Inference

Given the extensive information that our lo-

cal monitoring gathers, collective inference for ac-

counting CPU and network/disk IO bandwidth es-

sentially boils down to simple aggregation of the re-

source usage information collected by various local

monitoring units. Due to lack of space, we omit the

algorithmic and implementation details.

4.3 Controlling The Resource Usage

The goal here is to limit the resource consump-

tion by CEs or to maintain specified ratio of con-

sumption among CEs, in a VM-transparent way. To

achieve this, whenever we detect that a thread asso-

ciated with c is about to be scheduled, we manip-

ulate the density of the timer interrupts sent to the

CPU core. Generating faster timer interrupts will
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Figure 4: Shared MySQL cluster setting.

Phase Time Window Workload Top User

Phase 1 0-400s All CEs generate light loads CE2

Phase 2 400-600s CE2 starts to issue CE2

CPU-heavy requests

CE2’s workload

Phase 3 600-1200s overwhelms CPU, CE2

load increases every 100s

Table 1: Workload scenario.

have to effect of taking away the resource since the

thread will be descheduled faster and vice versa.

5 Analysis of Our Solution’s Effectiveness

We have conducted preliminary evaluation of the

solution approaches described in Section 4. In this

section we compare the performance of our solu-

tion against the LR techniques Figure 4 shows the

set-up of our MySQL cluster used here. We com-

pare the efficacy of Ours and LR in the following

online resource control situation: we wish to ensure

that when the aggregate workload imposed upon the

MySQL cluster causes its server CPUs to saturate,

we identify the contribution of various CEs to this

“overload,” and then enforce targeted CPU throt-

tling only to the CE causing the overload. We con-

figure our CEs to impose a dynamically changing

workload (consisting of three phases) on MySQL

as described in Table 1.

Results: Figure 5 shows CPU accounting for SN’s

server as carried out by LR and ours, respectively.

We use a “stacked” representation, where the area

under the curve corresponding to a CE represents

the CPU usage charged to it. During phase 1, both

LR and ours produce correct rank orders of CEs,

although LR slightly overestimates the CPU con-

sumption for CE2. However, during phase 2, LR

starts to report incorrect rank order: it determines

CE3 to be the cause of the increased CPU usage.

Upon investigating the reason for this mistake by

LR, we find the following. While CE2 issues CPU-

heavy requests and waits for MySQL’s response,
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(a) Result of CPU accounting using LR in stacked graph.
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(b) Result of CPU accounting using our prototype.

Figure 5: Comparison of CPU accounting results. CPU us-

age of SQL node is being accounted. By comparing the areas

of equivalent color we can see the rank order determined by

each technique as well as accuracies. The result of ours in-

cludes the ‘unaccountable’ portion. This can be divided among

chargeable entities by any reasonable policy.
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Figure 6: Response time change of RUBiS. This shows the

development of RUBiS response time for two cases - throttled

by LR, and controlled by ours. Since LR picks the wrong CE

(CE3) as a culprit of performance degradation, throttling the

request rate of CE3 is ineffective. However, our technique is

able to contain the response time so that SLA is not violated.

CE3 continues to issue requests at a relatively high

rate that are not CPU-heavy. However, the higher

rate of requests coming from CE3 causes LR to in-

fer spurious positive correlation between CE3’s re-

quests and SN’s CPU usage. In fact, LR is unable

to correct this throughout phase 2.

During phase 3, starting at t=600s, CE2 starts to

saturate the CPU by drastically increasing the work-

load it imposes as described in Table 1. Since our

technique identifies the true cause of the overload,

we are able to initiate the CPU throttling for CE2,

preventing the SLA violation. This demonstrates

one promising capability of our technique (which

is the thread-level monitoring technique) in critical

resource managements of such shared resources.



6 Conclusion

In this paper we have highlighted the need for a

better resource accounting and control capabilities

for the management of large-scale distributed sys-

tems. In order to understand the problem in more

depth, We have explored two different accounting

techniques built with different balance of empha-

sis - LR-based collective inference vs. fine-grained

thread-level system monitoring. Our analysis re-

vealed that there could be cases where more fine-

grained monitoring information does not only pro-

vide better accuracy, but also impact cricital man-

agement decisions.
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